28 February 2020

Please use separate sheets for different problems. Please answer all questions on a single sheet. Give reasons to your answers. Please provide the following data on each sheet

- name, surname and your student number,
- number of your group,
- number of the corresponding problem and the series.

Each problem is worth 10 marks and each question is worth 5 marks. To pass it necessary (but not sufficient) to score at least 50% out of 6 questions.

Problem 1.

Let V = lin((1, 3, 10, 11, 4), (1, 2, 7, 9, 4), (3, -1, 0, 13, 12)) be a subspace of \mathbb{R}^5 .

- a) find a basis of the subspace V and the dimension of V,
- b) find a system of linear equations which set of solutions is equal to V.

Problem 2.

Let $V \subset \mathbb{R}^5$ be a subspace given by the homogeneous system of linear equations

 $\begin{cases} x_1 + x_2 + 5x_3 + 4x_4 + 5x_5 = 0\\ x_1 + 2x_2 + 4x_3 + 9x_4 + 10x_5 = 0 \end{cases}$

- a) find a basis \mathcal{A} of the subspace V and the dimension of V,
- b) extend the basis \mathcal{A} to a basis \mathcal{B} of \mathbb{R}^5 and find coordinates of vector $w = (-5, -4, 1, 1, 0) \in \mathbb{R}^5$ relative to the basis \mathcal{B} .

Problem 3.

Let

$$A = \begin{bmatrix} -5 & 3\\ -6 & 4 \end{bmatrix}.$$

a) find a matrix $C \in M(2 \times 2; \mathbb{R})$ such that

$$C^{-1}AC = \begin{bmatrix} a & 0\\ 0 & b \end{bmatrix},$$

where a < 0,

b) compute A^{35} .

Problem 4.

Let

$$A = \begin{bmatrix} 1 & 2t & 2 \\ t & 1 & t \\ 2 & t & 2 \end{bmatrix}.$$

- a) for which $t \in \mathbb{R}$ is the matrix $A^2(A^{\intercal})^3 A^4$ invertible?
- b) find the entry in the third row and the second column of the matrix A^{-1} for t = 2.

Problem 5.

Consider the following linear programming problem $-x_2-2x_3+3x_4\to\min$ in the standard form with constraints

 $\begin{cases} 2x_2 + x_3 &= 1\\ x_1 + x_2 &- x_4 &= 1\\ - x_2 &+ x_4 &= 1 \end{cases} \text{ and } x_i \ge 0 \text{ for } i = 1, \dots, 4$

a) which of the sets $\mathcal{B}_1 = \{1, 3, 4\}$, $\mathcal{B}_2 = \{1, 2, 3\}$, $\mathcal{B}_3 = \{2, 3, 4\}$ are basic? Which basic set is basic feasible? Write the corresponding feasible solution.

b) solve the linear programming problem using simplex method.

Questions

Question 1.

Is matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ positive definite for all a, b, c, d > 0?

Question 2.

If $v = (1, 1, 0), w = (-1, 1, 2) \in \mathbb{R}^3$, $V = \ln(v)$, is the image of vector $w \in \mathbb{R}^3$ under the (linear) orthogonal symmetry about the subspace $V \subset \mathbb{R}^3$ equal to

$$S_V(w) = (1, -1, -2)?$$

Question 3.

If $A \in M(2 \times 2; \mathbb{R})$ and $A + A^{\intercal} = \mathbf{0}$, does it follow that $A^{\intercal}A = AA^{\intercal}$?

Question 4.

Is it possible that $A, B \in M(2 \times 2; \mathbb{R}), \det(A^2 + 2AB) \neq 0$ and $\det A = 0$?

Question 5.

Is it possible that \mathcal{A}, \mathcal{B} are two bases of \mathbb{R}^2 and

$$M(\mathrm{id})^{\mathcal{B}}_{\mathcal{A}} = \begin{bmatrix} 1 & 0\\ 1 & 0 \end{bmatrix}?$$

Question 6.

Are the affine subspaces $E, \ H \subset \mathbb{R}^3$ given by

$$E: \begin{cases} x_1 - x_2 = 5\\ 2x_2 - x_3 = 6 \end{cases}, H = (-1, 0, 2) + \ln((1, 1, 2)),$$

parallel?